Diffusion NMR spectroscopy.

نویسندگان

  • K Nicolay
  • K P Braun
  • R A Graaf
  • R M Dijkhuizen
  • M J Kruiskamp
چکیده

MR offers unique tools for measuring molecular diffusion. This review focuses on the use of diffusion-weighted MR spectroscopy (DW-MRS) to non-invasively quantitate the translational displacement of endogenous metabolites in intact mammalian tissues. Most of the metabolites that are observed by in vivo MRS are predominantly located in the intracellular compartment. DW-MRS is of fundamental interest because it enables one to probe the in situ status of the intracellular space from the diffusion characteristics of the metabolites, while at the same time providing information on the intrinsic diffusion properties of the metabolites themselves. Alternative techniques require the introduction of exogenous probe molecules, which involves invasive procedures, and are also unable to measure molecular diffusion in and throughout intact tissues. The length scale of the process(es) probed by MR is in the micrometer range which is of the same order as the dimensions of many intracellular entities. DW-MRS has been used to estimate the dimensions of the cellular elements that restrict intracellular metabolite diffusion in muscle and nerve tissue. In addition, it has been shown that DW-MRS can provide novel information on the cellular response to pathophysiological changes in relation to a range of disorders, including ischemia and excitotoxicity of the brain and cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of 2D correlation and exchange NMR spectroscopy in organic porous materials.

Two-dimensional (2D) nuclear magnetic resonance (NMR) methods for the investigation of correlation and exchange have been introduced in recent years and have been applied to a range of different systems. Here, we report on the use of 2D NMR diffusion-diffusion correlation spectroscopy for the investigation of diffusion anisotropy in cellular plant tissues and of diffusion-diffusion exchange spe...

متن کامل

Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter--new insights.

Intermolecular interactions in solution play an important role in molecular recognition, which lies at the heart of supramolecular and combinatorial chemistry. Diffusion NMR spectroscopy gives information over such interactions and has become the method of choice for simultaneously measuring diffusion coefficients of multicomponent systems. The diffusion coefficient reflects the effective size ...

متن کامل

Measuring Molecular Motion Using NMR Spectroscopy to Study Translational Diffusion

This chapter demonstrates how to use NMR spectroscopy to measure the rate of translational diffusion. Once measured, this rate can provide insight into the size and shape of the molecules in a sample and can even be used to match peaks in the NMR spectrum with the different components of a sample mixture. Of the possible applications of diffusion, the experiment presented focuses on using measu...

متن کامل

Statistical correlation and projection methods for improved information recovery from diffusion-edited NMR spectra of biological samples.

Although NMR spectroscopic techniques coupled with multivariate statistics can yield much useful information for classifying biological samples based on metabolic profiles, biomarker identification remains a time-consuming and complex procedure involving separation methods, two-dimensional NMR, and other spectroscopic tools. We present a new approach to aid complex biomixture analysis that comb...

متن کامل

Quantitative 1H NMR spectroscopy of blood plasma metabolites.

The absolute quantification of blood plasma metabolites by proton NMR spectroscopy is complicated by the presence of a baseline and broad resonances originating from serum macromolecules and lipoproteins. A method for spectral simplification of proton NMR spectra of blood plasma is presented. Serum macromolecules and metabolites are completely separated by utilizing the large difference in tran...

متن کامل

NMR diffusion-ordered spectroscopy can explain differences in skin penetration enhancement between microemulsion formulations.

Changing the formulation variables of microemulsion systems has a significant influence on the resulting transdermal enhancement effect. NMR diffusion-ordered spectroscopy (DOSY) can offer an extremely valuable tool to interpret the differences in the obtained fluxes based on variations in self-diffusions between the drug and its locus domain. From the clinical editor: Microemulsion systems are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NMR in biomedicine

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2001